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SUMMARY 

Temperature gradients in the steady state arc calculated for columns of 
electrolyte solution having rectangular section. and uniform bore. for.v2trious power 
dissipations. Wall thickness and material arc allowed for. Fillings having zero, posi- 
tive, and negative temperature coefficients of resistivity are calculated. correction 
being made for non-uniform current density. For negative coefficients, centrnl- 
peripheral gradients are more severe than simple theory suggests. especially at higher 
powers, but this tendency is very much less than in circular section columns. 

INTRODUCTION 

Central-peripheral temperature gradients have been calculated previously, 
assuming a zero temperature coefficient of resistivity and uniform density of current 
through the lumen section. In this paper, these gradients are recalculated without 
these simplifying assumptions. For negative coefficients, gradients arc more severe, 
increasingly so at high power dissipations. But the case is far more favourable than 
in circular section tubes, even more so than simple theory indicates. Wall thickness, 
however, has a larger influence for thick walls than is the cast for cylindrical columns. 
Similar calculations, using Bessel functions. are given in a previous paper of this se- 
ries’. A discussion of the anticipated effects of these gradients in clectrophoresis, and 
a comparison of results of digitally computed gradients, in the context of factors 
determining the idcal column shapes and thermal properties, ale given in a preceding 
paper2. A further paper3 describes programming and digital computation of the 

l To whom reprint rcqucsts should bc addrcsscd. Present nddrcss: Clinical Immunology Dcpart- 
mcnt. University of Arizona Mcdical Ccntcr, Tucson. Ark. 85724, USA. 
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gradients calculated here and in ref. 1. The results of this work were briefly reported 
at a symposium in 1971, by the second author4, at whose instigation this project was 
undertaken for the reasons outlined in refs. I and 2. The treatment has subsequently 
been extended at the second author’s suggestion to the unsteady state by Coxon and 
Binders. 

THEORY 

For au electrofyle of zero ten~peralure coefliicierll of vesistiviry2 
Consider a rectangular-section column filled with electrolyte. Assume it to be 

long enough to neglect end effects in a medial and uniform region. Assume the ratio 
of lengths of adjacent sides of the rectangle to be large enough to neglect edge effects. 
Assume that heat is uniformly generated in the electrolyte, and that there is no 
thermal convection or other internal fluid movement. Assume a zero temperature 
coefficient of resistivity and thermal conductivity2. Assume that a steady state pertains, 
and the column exterior is perfectly cooled and thermostatted. Using the listed sym- 
bols, which refer to the tube section normal to the long axis 

d2f WC8 --zz.z-- 
ds2 ICI 

Solving by Laplace transforms, the subsidiary equation is 

so 

WC8 -- ‘=- ICl$ 

and 

I=_-!z2: 
Cl 

For the column material 

Wt 
2 (20 -I- 6) = 

1~2 (7’2 - TI) 

d - 

so 

T2 = 7-, + - 
w, d 

2 (20 -I- h) k2 

The limits for eqn. 1, are 

(1) 

(2) 

s = n. I = T2 

and 
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Using these and eqn. 2, we obtain 

T, -t- 
w, cl A- wr .2 --= 

2 (2n -t- A) /c2 2ahlc, ‘2 

so 

Substituting into the original equation 

W, T = T, _+ 2 1 
Whe11 s 0 

TJ = 7; -+ q [-- 
d 

(2n -t- b) k2 -+ 2 i/c, 1 

d2t Wo(l -t at> 
dg2=- /Cl 

SO 

d2t w, a t Kl -- 
ds2 -+ lc, = kl 

Solving by Laplace transforms, tile subsidiary equation is 

so 

f 
1 

-t 
P =-- 

ap 
( 

wo fx 
u P2-p- 

1 ) 

Inverting 

t = J$ bos (s )‘q+) - 1-j 

For the tube material 

W k2 CT2 - T,) 
--- = 

2 (2n + b) (l 

SO 

T2 = T, -t 
w, (1 

2 (2a + 6) k2 

(3) 

(4) 

(5) 

(6) 

(.7) 
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For eqn. 5 the limits 

and 

_y = 0, - = dr 0 
Ch 

apply, Using these and eqn. 7 

K d 
Tz = T1 + 2 (20 -I_ b) lc2 

= $ [A cos (a py) -’ 11 

w, d 
Tl -I- T(~~_I_T~~, 

Substituting in the original equation. and using 

then 

cos 
m-) II 7. + 

1 1 
, 

W, d 
= - TZ(pa) I a -- t 

-- 
2 (2a 4 6) kz I a 

This expression is valid for both positive and negative values of the coeflicient a. 

WC have to evaluate the cosines of imaginary numbers 

XJ so 
cos s = 1 - +j- t 4! _.__-_-_I_ *.. (-! 

so 
7 .J A-” 

cos (is) = 1 -I- -& -I- + -I- 6! t ___ . . . 

which is also the value of cash (s), which series we may use in digital computation. 
So for negative a. the temperature expression becomes 

t = cash (‘)--) IT, _,_ ’ w, d 
cosh(ya)L 

1 _ 1 
%- + 2 (2~ -t b) Icz 1 a 

(9) 

where 

~_V_+!_ 
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The refnrionsliip of W, md W, 
Consider an element in the column section parallel to b, of width k, and 

thickness d.v, a distance s from the central line of the tttbe section 

w, = 2 w, 
J 

” (1 .-t- u I) b C/.V 
0 

From eqn. 8 

so 

w, = 2 W” 
0 I [ 

“ b a Tl -I- 
W, da cos (B -v) 

2 (27 + h) kz 

-t-, I] [-- 
cos <P a) 1 (IV 

. 

2Wob _ 
[ 

W, da 
- aTI+- 

cos cp a) 2 (2cJ -+ h) kz 
-t- I] ,s” cos <p A-) CIS 

[ 
2 b IV, a (2n -t 6) /cz tan (p n) 

= (2n + h)lc,/3 - W,Aadtc?n(pn) ] (TL -I- ;) (IO) 

which is valid for positive a. Similarly for negative I 

w, = 
[ 

2 b W, a (20 -t h) /r2 tanh (y a) 
(20 -t_ b) k2 y - W, b ad tanh (y a) ] (7.1 -I- ;) (11) 

Current demiry correctiort 
The foregoing theory is valid only for uniform current density. But current 

density cannot be uniform for coefiicients of resistivity other than zeroLsJ. To correct 
for this, modify eqn. 5 to * 

d2r wo 1 -- = _ -. 
dx2 ICI l-t-at 

To render this more easily soluble. let 

1 

l-1_ at 
=1+&&t 

and substitute negative ,u for positive a ond positive it’for negative a in eqns. S-1 1. 
For positive a and negative ,a 

, _ cash (y A-) 
- -Gosh (y a) [ 

7.1 
I 

-I- - -I- 
w, d 

P 2 (2n -t- 6) /c2 I 
I -- 

/b 

and 

w, = 
I 

2h W,p (ta -t h) Ii2 tanh (y a) I 
- 
(2a -/- b) k2 3’ - W, b ,u dtanh (y a) I( T1 -+ 7 ) 

and for negative a and positive ,u ’ 
t = cos(P-d [ P/l + 1 t w, d 1 - 

cos (P 0) 1 P 
-- -- 

2 (20 -t- 6) I<2 
1 

r-1 

(12) 

(13) 

(14) 
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and 

26 W, p (2n + h) kz tan CP n) 
(1% 

In practice (I + ut) is an approximation of a series (1 -t- ccl -I- PPJ Plotting 
the reciprocal of the latter against 1. an approximately straight line is obtained, of 
gradient ,u = 0.033, using values for 0.1 mM KCI”. This value was therefore used in 
digital computation 3. Above 34”, for T, of 4”, the relation is less linear and therefore 
less reliable. 

CONCLUSIONS 

Comparison of equations for zero and negative temperature cocfhcients of 
resistivity. in the latter case allowing for non-uniform current densities, shows that for 
electrolyte solutions there is an increase in central temperature not previously allowed 
for. This is less severe than in the case of circular column sections, dealt with in the 
previous paper. On the other hand. wall thickness has a greater influence. The 
comparison between circular and rectangular sections favours the latter more than 
was apparent from simple theory. particularly if the walls are thin compared to the 
lumen. As in circular sections, positive coefhcients are palliative. 

SYMBOLS AND UNITS 

a = 

x = 
6 = 
d = 
Ic, = 
Ict = 
I, T = 
Tl = 
Tz = 
TJ = 
w, = 

w, = 
f,p = 
a = 

P = 

Y = v -7 

P = a function of a 

half-thickness of interior of column 
values of 0 from zero to a 
width of column 
thickness of column wall 
thermal conductivity of electrolyte, cal.sec-‘*cm-‘*“C-l 
thermal conductivity of wall material, cal*sec-* #cm-* * “C-l 
temperature 
temperature at wall exterior, “C 
temperature at lumen periphery, “C 
temperature at lumen section centre. “C 
nominal power dissipation assuming a zero value of a, or at switch-on at T,, 
cal 9 cme3 
actual power dissipation, per unit length of column, cal*cm-’ 
operators in Laplace ‘transforms 
temperature coefficient of resistivity of electrolyte, “C-l 
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